13 research outputs found

    An Ontological Approach to Inform HMI Designs for Minimizing Driver Distractions with ADAS

    Get PDF
    ADAS (Advanced Driver Assistance Systems) are in-vehicle systems designed to enhance driving safety and efficiency as well as comfort for drivers in the driving process. Recent studies have noticed that when Human Machine Interface (HMI) is not designed properly, an ADAS can cause distraction which would affect its usage and even lead to safety issues. Current understanding of these issues is limited to the context-dependent nature of such systems. This paper reports the development of a holistic conceptualisation of how drivers interact with ADAS and how such interaction could lead to potential distraction. This is done taking an ontological approach to contextualise the potential distraction, driving tasks and user interactions centred on the use of ADAS. Example scenarios are also given to demonstrate how the developed ontology can be used to deduce rules for identifying distraction from ADAS and informing future designs

    Teaching technical design specifications in product redesign processes using the FBS model

    No full text
    Establishment of technical design specifications for the redesign of technical systems, which are not derived from customers needs, relies heavily on designers intuition and experience. The very few methods proposed in the literature for the establishment of such technical design specifications hinders the learning process in conceptual design subjects. The objective of this article is to propose a structured method for identification of technical design specifications based on the function-behavior-state (FBS) model applied on redesign tasks. The method is being taught to students on the course of methodical design in order to develop their abilities on the identification of technical specifications without relying on previous knowledge on the system and relying more on detailed observation. This method is based on the observation and identification of the different states taken by the attributes of the entities conforming the system (i.e., flows-function carriers-environment). A small scale preliminary study was conducted in order to validate the initial performance of the proposed method. Eight groups made up of undergraduate mechanical engineering students with basic knowledge in conceptual design were instructed to identify technical design specifications. The redesign task was to create an automated solution for replacing the manual production process at small food manufacturing companies. Four groups of students had to establish the specifications using their experience while the other four groups had to use the proposed method. Initial results showed for the proposed method a 36% increase in the number of identified specifications. Copyright © 2019 ASME

    Teaching technical design specifications in product redesign processes using the FBS model

    No full text
    Establishment of technical design specifications for the redesign of technical systems, which are not derived from customers needs, relies heavily on designers intuition and experience. The very few methods proposed in the literature for the establishment of such technical design specifications hinders the learning process in conceptual design subjects. The objective of this article is to propose a structured method for identification of technical design specifications based on the function-behavior-state (FBS) model applied on redesign tasks. The method is being taught to students on the course of methodical design in order to develop their abilities on the identification of technical specifications without relying on previous knowledge on the system and relying more on detailed observation. This method is based on the observation and identification of the different states taken by the attributes of the entities conforming the system (i.e., flows-function carriers-environment). A small scale preliminary study was conducted in order to validate the initial performance of the proposed method. Eight groups made up of undergraduate mechanical engineering students with basic knowledge in conceptual design were instructed to identify technical design specifications. The redesign task was to create an automated solution for replacing the manual production process at small food manufacturing companies. Four groups of students had to establish the specifications using their experience while the other four groups had to use the proposed method. Initial results showed for the proposed method a 36% increase in the number of identified specifications. Copyright © 2019 ASME

    Progress with situation assessment and risk prediction in advanced driver assistance systems: A survey

    No full text
    In the field of automotive safety, advanced driver assistance systems (ADAS) are receiving growing attention. Effective ADAS requires awareness of the actual driving situation, a reliable assessment of the risks, and making rapid decisions on assisting actions. This paper reviews the current progress in these complementing subfields. The goal is to explore and critically analyze the most promising technological solutions and system application concepts. In order to systematize our study, first a reasoning model is introduced. Then, a detailed study of the different situation and risk evaluation methods currently applied in automotive safety systems is presented. Our first observation has been that the general thinking about ADAS reflects a ‘perception, analysis, decision and action’ pattern. In addition, we observed that situation and risk assessment is typically restricted both by the number of factors considered, and by a limited consideration of drivers’ attitudinal behavior. Though a huge amount of research knowledge has been published, there are still several gaps in the knowledge related to understanding and handling complex driving situations. We will use the information gathered in this survey to determine the most critical factors for ADAS, to extend risk assessment with consideration of human individual characteristics, and to develop a driveradaptive reasoning model.Design EngineeringIndustrial Design Engineerin

    The effects of time pressure on driver performance and physiological activity: A driving simulator study

    No full text
    Speeding because of time pressure is a leading contributor to traffic accidents. Previous research indicates that people respond to time pressure through increased physiological activity and by adapting their task strategy in order to mitigate task demands. In the present driving simulator study, we investigated effects of time pressure on measures of eye movement, pupil diameter, cardiovascular and respiratory activity, driving performance, vehicle control, limb movement, head position, and self-reported state. Based on existing theories of human behavior under time pressure, we distinguished three categories of results: (1) driving speed, (2) physiological measures, and (3) driving strategies. Fifty-four participants drove a 6.9-km urban track with overtaking, car following, and intersection scenarios, first with no time pressure (NTP) and subsequently with time pressure (TP) induced by a time constraint and a virtual passenger urging to hurry up. The results showed that under TP in comparison to NTP, participants (1) drove significantly faster, an effect that was also reflected in auxiliary measures such as maximum brake position, throttle activity, and lane keeping precision, (2) exhibited increased physiological activity, such as increased heart rate, increased respiration rate, increased pupil diameter, and reduced blink rate, and (3) adopted scenario-specific strategies for effective task completion, such as driving to the left of the lane during car following, and early visual lookout when approaching intersections. The effects of TP relative to NTP were generally large and statistically significant. However, individual differences in absolute values were large. Hence, we recommend that real-time driver feedback technologies use relative instead of absolute criteria for assessing the driver’s state
    corecore